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Abstract. The magnetic phase diagram for MnPS3 is established, and then explored with
regard to Zn substitution at the Mn sites. This allows construction of the temperature/applied-
field/dilution phase diagram. Furthermore, it is concluded that second- and third-nearest-
neighbour interactions are important in determining the magnetic behaviour of the system.

1. Introduction

The behaviour of two-dimensional (2D) magnetic systems has received a great deal of
attention [1]. Theoretically, problems that are difficult in three dimensions often become
more tractable in two dimensions. The classic example is the Onsager solution to the 2D
rectangular Ising model [2]. Thus, the study of low-dimensional magnets allows these
models to be experimentally realized, and gives new insights into fundamental phenomena.
In the study of 2D antiferromagnets, systems such as X2YF4 where X may be Rb or K and
Y maybe be Mn, Co, Ni for example [1, 3, 4] are most commonly studied. In addition,
the parent materials of copper–oxygen-based superconductors are often 2D antiferromagnets
[5]. In all of these cases the 2D lattice is square. Manganese thiophosphate, MnPS3, is a
honeycomb-lattice material, and therefore opens up new and unusual possibilities for study.

In this paper, we construct and explore the temperature/applied-field/magnetic dilution
phase of MnPS3. It is a layered, quasi-two-dimensional Heisenberg antiferromagnet with,
at low applied fields, a small anisotropy causing the moments to point in thez-direction—
perpendicular to the layer planes. The Néel temperature,TN , is 78 K at low fields
(Hz < 40 kOe, whereHz is applied in thez-direction) [6]. Crystallographically, it
is a monoclinic structure with space groupC2/m and lattice parametersa = 6.077 Å,
b = 10.524 Å, c = 6.796 Å and β = 107.35◦, so thec-axis is not quite parallel to the
z-direction. In the layers, manganese atoms form a honeycomb lattice, with each manganese
neighboured by three manganese atoms and three P2 pairs [7]. Each layer is sandwiched
within a pair of sulphur layers. These three-layer structures are then held together by Van der
Waals forces between adjacent sulphur layers. The distance between manganese layers and
the associated complex exchange path are the factors that give rise to the two-dimensional
magnetism exhibited by MnPS3 and other transition metal thiophosphates.

Each manganese atom is antiferromagnetically linked (J1/k ∼ 8–10 K) [8, 9] to its
three intraplanar nearest neighbours, and ferromagnetically linked to its interplanar nearest
neighbours [6] (figure 1). The best current estimate of the ratio of interplanar(J ′) to
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Figure 1. The spin structure of MnPS3. Arrows denote spin directions.

intraplanar first-neighbour exchange(J1) is of the order of 1/400 [10]. Previous results
include an estimate of 2/5 [9], but these measurements are more doubtful. So MnPS3 is a
useful approximation to a 2D magnet.

In this paper, we will present the phase diagram of MnPS3 as a function of temperature,
field and dilution of the magnetic atoms by means of substitution of a non-magnetic species,
in this case zinc. Zinc was chosen because ZnPS3 is of the same structure, with lattice
parameters that are very similar to those of MnPS3 [7]. MnxZn1−xPS3 is explored in [8],
which establishes that the Curie–Weiss temperature is a linear function ofx, suggesting that
Zn does substitute randomly in the system. It also establishes that the system’s susceptibility
can be effectively explained using high-temperature series expansions forx greater than the
percolation value, and fitted by adding in a Curie correction whenx is below the percolation
value. This correction scales withx. Thus, the susceptibility arising from antiferromagnetic
order is still significant forx less than the critical concentration.

2. Sample preparation and apparatus

Samples of MnxZn1−xPS3 were prepared forx = 1, 0.95, 0.8, 0.65, 0.5 and 0.3 using a
vapour-transport method. Stoichiometric quantities of 99.99% pure elements were sealed in
a quartz tube under∼10−6 Torr of argon. The 18 cm tube was then placed in a two-zone
furnace, with the temperature varying smoothly from 700 to 680◦C along the length of
the tube. This produced a mass of transparent green crystals of hexagonal habit, typical
dimensions being 5×5×0.1 mm. X-ray diffraction and microprobe analysis confirmed the
structure and composition.

Measurements were taken using a Quantum Design MPMS-7 SQUID magnetometer,
capable of applying fields from−70 to+70 kOe and temperatures of 2 to 350 K. Samples
were mounted with the planes either horizontal, if the parallel susceptibility,χ‖, was to
be measured (with thec-axis approximately parallel to applied field,H = Hz), or with
the planes vertically oriented, for measurements ofχ⊥ (with the c-axis approximately
perpendicular toH = Hxy).
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Figure 2. The parallel susceptibility of MnPS3 as a function of temperature at different applied
fields,Hz.

3. MnPS3

Initial investigations confirmed thatTN = 78 K for MnPS3 when the applied field,H ,
was either parallel to the moment direction (perpendicular to the layers) or perpendicular
to the moment direction. Initial measurements were taken in fields of 100, 600 and
10 000 Oe, and demonstrated little variation across fields, and showed only minor differences
between field-cooled and zero-field-cooled runs. Maximum susceptibilities were typically
7×10−5 emu g−1, and any variations in magnitudes could be accounted for by uncertainties
in the sample masses. Figure 2 showsχ versusT at different fields applied along the
spin direction(H = Hz). TN is determined from the discontinuity in the first derivative
(∂M/∂T )H . The hump at 120 K(T ∼ (3/2)TN) is characteristic of the persistence of
short-range order within the planes of a 2D magnet [1]. Fitting the high-temperature series
expansion of Rushbrooke and Wood [11] to these data gave a nearest-neighbour exchange of
J1/k = 8.1 K, with excellent reliability and in excellent agreement with recent results [8].

The negative gradient ofχ⊥ as T increases from zero can be attributed to spin
waves [12].

These measurements show that the susceptibility behaves like the parallel susceptibility
(χ‖) of an ordered antiferromagnet at smallHz, with its positive temperature dependence,
to aχ⊥-behaviour at high fields where the susceptibility shows a much weaker and slightly
negative temperature dependence. This indicates a spin flop taking place atHz ∼ 45 kOe
at low temperatures. This is graphically illustrated in the runs carried out between 45 and
60 kOe, where the susceptibility shows aχ⊥-shape at low temperatures and becomes more
χ‖-like asTN is approached. The point on theχ versusT curve where the gradient takes on
its most negative value gives the temperature of the spin flop at that field, as this is where
the moments are changing orientation most rapidly. Thus,Hsf increases asT increases, a
result which will be shown in greater detail when spin-flop curves are discussed.
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Figure 2 also shows thatTN maintains considerable consistency across fields. This is
not unexpected, as measurements must be taken very close to the critical point if critical
behaviour is to be seen.TN did not vary appreciably, even in experiments with the applied
field very close to the value taken on byHsf in the vicinity of TN . Theories of the
magnetic phase diagram [13, 14] suggest thatTN should decrease markedly nearHz = Hsf ,
as atHsf the anisotropy, which gives rise to the ordering, is suppressed by the external
field. However, in an imperfect 2D magnet, ordering can also arise through the interplanar
coupling or distant-neighbour interactions. Thus, despite the lower dimensionality, no large
reduction inTN is seen. In [15], a second magnetic order, with spins lying parallel to the
b-axis, was observed aboveTN . This suggests a small in-plane anisotropy, which could
also be responsible for maintaining order.

When a magnetic fieldHz is applied parallel to the easy axis—parallel with the
anisotropy direction—there will be two competing interactions—the anisotropy, denoted
DS2, and the Zeeman energy12(χ⊥ − χ||)H 2

z [13]. For smallHz, the moments will remain
in the z-direction. But as the Zeeman energy increases with field, the two terms will come
to be equal. The field at which this happens is the spin-flop field,Hsf . ThereforeHsf
can give the anisotropy. This anisotropy is the result of competing single-ion and dipolar
anisotropies, with the dipolar effects being the stronger [9, 17].

At the spin-flop field, the moments flop from the antiparallel Ising-like antiferromagnetic
(AF) arrangement in which they are perpendicular to the planes, to an antiparallel spin-flop
(SF) arrangement within the planes, as the magnet is now an easy-plane magnet due to an
effective change in the sign of the anisotropy. The spins, however, are still Heisenberg
spins. A Kosterlitz–Thouless bound vortex phase [16] is unlikely in MnPS3. This is
because of interplanar and possible next-nearest-neighbour interactions, and the possibility
of a preferred direction within the planes [10, 15], all of which may allow the flopped phase
to order in a truly long-range fashion. This agrees with the observedχ‖ versusT data at

Figure 3. Spin-flop curves for MnPS3 at various temperatures. The fits to the soliton theory
are shown as solid lines.
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high fields in whichχ‖ behaves like a true transverse susceptibility.
Measurements were made of magnetic moment versusHz at constant temperature for

temperatures varying from 5 K to TN . A typical series of such runs can be seen in figure
3. The response can be seen to be linear with field, and then to increase rapidly before
again reaching a linear regime. What is happening is that initially the spins are parallel
to the applied field. The 5 K curve in figure 2 showsχ‖ at this temperature to be very
small—hence the small gradient of theM versusHz curve forHz < Hsf . But asHz
increases, as noted above, the spins flop into the plane. As they are now perpendicular to
the applied field, they show aχ⊥-response, which figure 2 shows is much stronger—hence
the larger gradient of theM versusHz curve forHz > Hsf . As noted above, the spin-flop
field increases with temperature, as expected given thatχ⊥ − χ‖ is decreasing.

The spin flops in figure 3 show considerable width—10 kOe—greater by an order of
magnitude than widths due to demagnetizing effects or the applied field being at a small
angle to thez-direction [13]. This is evidence of the two dimensionality smearing out the
transition. Because of the high order of the transitions,Hsf is found by taking the maximum
in the derivative(∂M/∂H)T .

Fitting theHsf versusT data thus obtained allowed an extrapolation to be made to find
Hsf (T = 0), which was found to be 45 kOe. This is different from the values obtained in [9]
of 36.6 kOe and in [18] of 38 kOe. This value is larger by approximately 20%. However,
the value showed consistency across samples from different crystal growth runs, and the
analysis of the samples could find nothing amiss. Furthermore, thisHsf fits well into the
Hsf versus magnetic dilution data discussed in section 4. The reason for the discrepancy is
unclear.

The spin-flop curves can be fitted by a soliton theory [1, 13]. In this theory, the spin-
flop phase is nucleated by domain walls, as within a wall the spins change orientation,
and so there will be spins lying in the planes even at low fields. AsHz is increased, the
domain wall width diverges—the ratio of flopped to unflopped phase increases. Therefore,
this theory can lead to a prediction for the magnetization as a function of field at a given
temperature. Reference [13] gives

Msol = 8S2χ⊥Hz

[
2|J1|3/2

πkBT |D(1−H 2
z /H

2
sf )|1/2

]1/2

q−1 (1)

which leads to the magnetization being given by

M = Msol (Hz < Hsf )

M = χ⊥Hz −Msol (Hz > Hsf )
(2)

whereMsol is the contribution of the spins in a static domain wall to the magnetization.
q−1 is a domain wall density,J1 is the nearest-neighbour exchange andS is the spin. As
we can findD fromHsf and the susceptibilities can be measured,q−1 is the only unknown.
This allows a useful test of the theory. The solid lines in figure 3 show the results of fitting
(2) to various spin flops. In the fit,q and a background term linear inHz are the only
variable parameters. The soliton fit assumes thatM is due solely to spins in the domain
walls. The linear term allows for the response of spins in the domains themselves. This
is necessary, as unpaired spins are possible in a honeycomb lattice due to the odd number
of nearest neighbours. All of the other values are taken from previous experiments, and as
can be seen the resulting fit is quite acceptable, an encouraging sign of consistency.

The fit givesq−1 ∼ 0.003, at 5 K—a reasonable figure [13], given thatq measures
the distance in lattice spacings between domain walls and that typical values are 10−3 for
K2MnF4 [1]. Note that the fit is useful until quite close to the spin flop itself. The coefficient
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of the linear term changed from 9× 10−6 emu g−1 for Hz < Hsf to 4× 10−5 emu g−1 for
Hz > Hsf , indicating that not all of the magnetization is due to the domain walls. Unpaired
spins within domains are the likely cause, as this agrees with the larger susceptibility for
the perpendicular arrangement.

Figure 4. The magnetic phase diagram of MnPS3. SF, AF and P denote spin-flop, anti-
ferromagnetic and paramagnetic phases respectively.

Figure 4 shows the phase diagram derived for pure MnPS3. This agrees in general
with the theoretical diagram (figure 4, inset) [13]. However, in the experimental case,TN
remains more constant with field. It appears to decrease by just one degree in the vicinity
of Hsf , rather than retreating to zero. The true extent may well be masked by SQUID
resolution, because if the spin-flop line is truly bifurcating, the gap between the two lines
after bifurcation may be unmeasurable until temperatures well in excess of the temperature
of the bicritical point,TBCP , are reached.

The dotted line in figure 4 gives the phase diagram with a field applied perpendicular to
the c-axis. As anisotropy is being reinforced by the applied fieldHxy , there is no spin-flop
line, and therefore little detail to observe. It can be noted that for neither orientation could
the SQUID apply a field close enough to the saturation field to cause the SF/paramagnetic
(SF/P) line to bend back towards theH -axis. An estimate for the saturation field,Hzs , can
be obtained from the anisotropy and exchange [13], and is found to be∼1.8×106 Oe—far
beyond any possible SQUID measurement. Similar calculations give the exchange field,
He, as 0.9×106 Oe and the anisotropy field,Ha, as 1 kOe, givingα = Ha/He ≈ 1×10−3,
agreeing with the statement that MnPS3 is very close to being a Heisenberg system.

4. MnxZn1−xPS3

Measurements similar to those described above were repeated forx = 0.95, 0.8, 0.65, 0.5
and 0.3. Figure 5 showsχ‖ againstT for the dilutions that showed a phase transition. The
figure shows that the hump in the susceptibility atT > TN vanishes progressively with
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Figure 5. χ plotted againstT for different values ofx.

decreasingx, demonstrating the breakdown of correlations within the planes. Atx = 0.5
there is a strong paramagnetic behaviour for smallT , as now many of the spins no longer
belong to the infinite cluster. The types of order appear to remain the same as in the pure
material, although neutron scattering is needed to prove or disprove this.

The phase diagram forx = 0.5 is shown in figure 6. Forx = 0.3, no ordering occurred.

Figure 6. The magnetic phase diagram of Mn0.5Zn0.5PS3.
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Again, the dotted line gives theHxy phase diagram. Because atx = 0.5 the anisotropy is
greatly reduced,Hxy enhances the ordering interaction, and serves to increaseTN at a rate
of 3.6× 10−5 K Oe−1 for Hxy > 25 kOe.

An increase in the size of the critical region can be seen. While the material is now
dilute and random, critical-region broadening requires macroscopic inhomogeneities. The
results from [8] suggest that truly random examples of MnxZn1−xPS3 can be produced.
And for the samples used here, XRD and microprobe experiments demonstrate that no
such inhomogeneities exist in the material. Therefore, either the transition is sensitive to
local inhomogeneity—unlikely given that correlation lengths diverge at a phase transition—
or some other effect is at work. Reduced effective dimensionality could also broaden the
phase transition, but there is little evidence to support this hypothesis. The question remains
unresolved.

Random-field effects [4] could also affect the width of the critical region. However, the
expected history dependence in the susceptibility has not been observed. If the dependence
is weak, this could be masked by the high paramagnetic background. This background
is the result of a large number of isolated magnetic atoms and clusters existing at small
x. This limitation could be overcome using neutron scattering, as it probes the magnetic
Bragg peaks directly. Alternatively, if second- and third-nearest-neighbour (nnn and 3nn
respectively) interactions are significant, they could act to smooth the random-field effects.
These effects would then become negligible until very high dilutions are reached, at which
the magnetic order itself will have broken down. Figure 6 demonstrates that it is the SF
line that bifurcates at the BCP. This is not always the case [19], and demonstrates that
Mn0.5Zn0.5PS3 is a good approximation to a 2D system. Whether the bifurcation behaviour
depends on Zn content cannot be established with the resolution of the SQUID. Neutron
scattering experiments in high fields may be necessary.

Hsf at low T still has the positive temperature dependence observed earlier, but the
maximum is reached at a relatively lower temperature. This is because the dilution reduces
the correlation length, resulting in the earlier onset of critical fluctuations. This also helps
to explain the breadth of the critical region.

Of great interest is the very presence of order for Mn0.5Zn0.5PS3. The critical
concentration for site dilution in a honeycomb lattice with nearest-neighbour interactions is
pc(s) = 0.7 [20]. Thus if MnxZn1−xPS3 were describable by a nearest-neighbour exchange
only, it should not order forx = 0.5. Reference [20] shows that for 3nn interactions, where
J1 = J2 = J3, pc(s) = 0.3. Our results show order atp = x = 0.5 and none atx = 0.3.
This suggests thatJ2 and J3 are significant but, as expected, weaker thanJ1. This also
agrees with the small reduction inTN atHsf in the pure material—nnn and 3nn interactions
may well act to maintain the ordering.

Our figure ofTN = 54 K for x = 0.8 agrees very well with [8], which reports the same
value from using a Faraday balance. That the continuance of order forx < 0.7 has not
been noted in [8] is understandable, as the lowest temperature explored is 30 K. Also, a
large paramagnetic signal appears at high dilution.

5. The 3D phase diagram

These results can be collected into a temperature/applied-field (Hz)/dilution magnetic phase
diagram for MnxZn1−xPS3 (figure 7). Here, the enclosed region is the antiferromagnetic
region. Above the top surface is the spin-flop phase, and climbing to large enoughHz
would bring about a high-order phase transition to a paramagnetic aligned state. Coming
out of the page, the system enters into a disordered paramagnetic state due to increasing
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Figure 7. The temperature/applied-field (H = Hz)/dilution phase diagram for MnxZn1−xPS3.

temperature, while to the right it enters paramagnetism due to lack of magnetic atoms.
The shape of theTN versusx curve for low field is projected onto theTN–x plane.TN

obeys a linear decrease withx until approximatelyx = 0.7 (the nn percolation threshold)
is reached and then proceeds to accelerate towards zero, reaching it for between 50 and
70% Zn.

According to [13] the SF and AF/P boundaries in figures 4 and 6 can be fitted to

TN(Hz)

TN(0)
=
(

1− H 2
z

H 2
sf

)n
(3)

where the term on the right-hand side is a measure of the effective anisotropy. These fits
were performed, varying onlyn, and using the maximum value ofHsf . The fits forx = 1
and x = 0.5 can be seen as the full lines in figures 4 and 6 respectively. Forx = 1,
0.8 and 0.5,n was found to be 0, 0.03 and 0.05 respectively, and so gives a measure of
the broadening of the critical region away from a logarithmic dependence(n = 0) of TN
on the effective anisotropy. Allowing for the temperature dependence ofHsf , the fits are
acceptable, again demonstrating the 2D nature of MnxZn1−xPS3.

6. Conclusions

We have constructed theT/Hz/x phase diagram for MnxZn1−xPS3. From this work, we
conclude that MnPS3 is a good approximation to a 2D Heisenberg antiferromagnet with
small Ising-like anisotropy.

The soliton theory put forward in [1, 13] appears useful in describing the spin-flop
transition, although it breaks down in the critical region, probably due to a field dependence
in q−1. Furthermore, the spin-flop phase is a true LRO state, although this is to be explored
further.

Also, care must be taken when analysing results, as a nearest-neighbour model does not
appear to be sufficient. Interactions up to 3nn at least appear to be important in dealing
with the magnetic properties.
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